clearly about the impending rise of robots and help robotists understand how their creations are likely to be received.

Acknowledgments

We thank Bertram Male, Ian Finkelstein, Michael Clamann, and an anonymous reviewer for comments on a draft of this paper. This work has been supported by the National Science Foundation award SPRF-1714298 to Y.E.B. by the National Science Foundation awards IIS-1149965 and CCF-1533844 to R.A., and a grant from the Charles Koch Foundation to K.G.

References


© 2019 Elsevier Ltd. All rights reserved.

Letter

Does Explaining Social Behavior Require Multiple Memory Systems?

Pieter Van Dessel ⋅,1,* Bertram Gawronski,2 and Jan De Houwer1

Amodio [1] argues that social cognition research has for many decades relied on imprecise dual-process models that build on questionable assumptions about how people learn and represent information. He presents an alternative framework for explaining social behavior as the product of multiple dissociable memory systems, based on the idea that cognitive neuroscience has revealed evidence for the existence of separate systems underlying distinct forms of learning and memory.

Although we applaud Amodio’s attempt to build bridges between social cognition, learning psychology, and neuroscience, we believe that his interactive memory systems model rests on shaky grounds. In our view, the most significant limitation is the idea that behavioral dissociations provide strong evidence for multiple memory systems with functionally distinct learning mechanisms. A major problem with this idea is that behavioral dissociations can arise from processes during the retrieval and use of stored information, which does not require any assumptions about distinct memory systems or distinct forms of learning. For example, in contrast to Amodio’s argument that double dissociations between implicit evaluative bias and implicit stereotypical bias in the prediction of different forms of discriminatory behavior provide evidence for distinct memory systems [2], the observed dissociation may simply indicate that people retrieve and use different kinds of information when faced with different kinds of behavioral decisions (e.g., how close to sit next to a stranger vs. whom to choose as a partner for a trivia task). Such differences in the retrieval and use of stored information do not imply that different types of information (e.g., evaluative vs. stereotypical) are stored in distinct memory systems.

The same concern applies to dissociations involving neural structures. For example, in instrumental learning tasks, Parkinson’s disease patients with striatal dysfunction have been found to verbally report the correct reward contingencies without making reward-congruent choices, whereas patients with hippocampal lesions show the reversed impairment [3]. Amodio interprets such findings as evidence for independent representations of conceptual and instrumental knowledge arising from distinct forms of learning [1]. However, such dissociations can also arise from differences in retrieval processes drawing upon a single memory system. In line with this concern, it has been argued that dissociations in the behavior of Parkinson’s disease and hippocampal lesion patients reflect differences in the expression of a single type of representation in two tasks that require different ways of retrieving these representations [4]. Theoretical ambiguities like these have led to increased skepticism about the idea that cognitive
neuroscience reveals multiple memory systems that are each associated with different neural substrates [5].

Our arguments are also applicable to other dissociations beyond the ones discussed by Amodio. For example, several studies have found that implicit (i.e., spontaneous) evaluations reflect the mere co-occurrence of stimuli regardless of their relation, whereas explicit (i.e., deliberate) evaluations are sensitive to the particular relation of the co-occurring stimuli [6]. Based on extant dual-process theories, such findings have been interpreted as evidence for distinct learning mechanisms underlying implicit and explicit evaluations: automatic formation of associative links between co-occurring events (e.g., associative link between A and B) and controlled generation and truth assessment of mental propositions about the relation between co-occurring events (e.g., A prevents B) [7]. Thus, different from the argument that the observed dissociation provides evidence for functionally distinct learning mechanisms, it can be explained by retrieval-related processes without any assumptions about distinct learning mechanisms or distinct memory systems.

When exploring complexity in the retrieval and use of stored information, social cognition research can draw upon an extensive literature in diverse fields of psychology and neuroscience. For example, a wide range of phenomena such as categorization, task switching, recognition, recall, contingency learning, feature binding, stimulus–response binding, negative priming, and social judgment can be accounted for by episodic memory models that assume a single (episodic) memory system that is operated upon by context-dependent similarity-based retrieval mechanisms [8–10]. Likewise, many complexities of Pavlovian conditioning can be accounted for by assuming a comparator mechanism that compares multiple simple associations at the time of performance [11]. Finally, cognitive neuroscience has seen a surge in the popularity of predictive coding models, which explain a wide range of behavioral findings in terms of highly flexible processes involved in the retrieval and expression of low-level predictions [12]. Social cognition researchers are only beginning to exploit the huge potential that these retrieval-based approaches offer. Following this shift towards explaining behavioral complexity at the level of retrieval might be a more promising way forward for social cognition than a proliferation of learning and memory systems.

Acknowledgments
Preparation of this article was supported by a Post-doctoral fellowship of the Scientific Research Foundation, Flanders to P.V.D., Methusalem Grant BOF16/ME5-V002 to J.D.H., and by National Science Foundation, Flanders to P.V.D., University of Texas at Austin, TX, USA.

*Correspondence: Pieter.vanDessel@UGent.be (P. Van Dessel). https://doi.org/10.1016/j.tics.2019.02.001
© 2019 Elsevier Ltd. All rights reserved.

References

Forum

Obsessive Compulsive Disorder: A Pathology of Self-Confidence?

Julian Kiverstein 1,4,*
Erik Rietveld 1,2,3,4
Heleen A. Slagter 4,5,6
Damaïan Denys 1,4

A striking change OCD patients repeatedly describe following treatment with deep brain stimulation (DBS) of the ventral anterior limb of internal capsule (vALIC) is an immediate increase in self-confidence. We show how the DBS-induced changes in self-confidence reported by our patients can be understood neurocognitively in terms of active inference.